## **Coherent treatment of transfer excitation processes in swift ion-atom collisions** E.P. Benis<sup>1\*</sup>, T.J.M. Zouros<sup>2,3</sup>, A. Laoutaris<sup>2,3</sup>, I. Madesis<sup>2,3</sup>, S. Nanos<sup>1,3</sup>, S. Passalidis<sup>4</sup>, and A. Dubois<sup>4</sup>

<sup>1</sup>Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece

<sup>2</sup>Department of Physics, University of Crete, GR-70013 Heraklion, Greece

<sup>3</sup>Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, NCSR "Demokritos", GR-15310 Ag. Paraskevi, Greece

<sup>4</sup>Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France

For more than 40 years since the first ion-atom collision investigations of the two-electron process of electron transfer with excitation (TE) and its resonant (RTE) and non-resonant (NTE) features, a satisfactory quantum mechanical treatment has been lacking. Here, we present the first such comprehensive TE treatment using a three-electron atomic orbital close-coupling approach (3eAOCC),



MeV impact energies [1-4].

primarily produced from the  $1s^2$  component by transfer excitation, while the  ${}^{4}P$  by single electron capture to the 1s2s <sup>3</sup>S component.

absolute 0° Auger SDCS for the production of <sup>2</sup>D states by TE. FCC: Full 3eAOCC calculations. IA: Impulse approximation.

function of projectile energy. A strong  $M_I=0$ contribution is observed for collision energies above 6 MeV where the highenergy peak lies.



**Fig. 6.** mechanisms Excitation) Transfer Excitation), as well as the NCTE (Nonresonant proposed **Correlated Transfer Excitation**) for the production of the  $1s2p^2$  <sup>2</sup>D level in swift collisions of  $C^{4+}(1s^2)$  + He.

OBK approximation 
$$\left|-i\int_{-\infty}^{+\infty} dt \langle \Psi_{f} | W | \Psi_{i} \rangle e^{-i\Delta E_{if}t} \right|$$
  

$$W = V^{T}(r_{i}) + V^{T}(r_{j}) - \frac{Z_{p}}{r_{k}} + \frac{1}{r_{ik}} + \frac{1}{r_{jk}}$$

$$\sqrt{2}W_{ci} = \langle 2n|V^{T}|1s \rangle \langle 2n'|1s \rangle + \langle 2n2n'|\frac{1}{r_{ik}}|1s|s$$

$$\langle 2p|V^{T}|1s\rangle \langle 2p'|\underline{1s}\rangle + \langle 2p2p'|\frac{1}{r_{ik}}|1s\underline{1s}\rangle$$
[1] E
[2] J.
[3] I.
[4] A

## References

.P. Benis et al, J. Phys. B **49**, 235202 (2016). .W. Gao et al, Phys. Rev. Lett. **122**, 093402 (2019). Madesis et al, Phys. Rev. Lett. **124**, 113401 (2020). [4] A. Laoutaris et al, Phys. Rev. A **106**, 022810 (2022).