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3eAOCC : He, C4+ AND C3+ DESCRIPTION

Our approach is based on a semiclassical atomic orbital
close-coupling treatment, with asymptotic (atomic)
descriptions of the neutral and charged collision partners
[1, 2]. The approach and our corresponding computer
codes are versatile so that we include three active
electrons in the calculations to describe accurately C4+,
C3+ and He, the latter being described by a single
electron attached to He+ through a model potential
expressed as:

V (r) =

13∑
i=1

−ci
r

e−αir
2

(1)

where the coefficients and exponents are optimized to
get ground state with binding energy close to the first
ionization energy (24.6 eV), the first excitation energies
and correct Coulombic limits at r → 0 and +∞. They
are listed in Table I.

The atomic states centred on He (modelled by the
potential of Eq. 1), C4+ and C3+ are expressed on sets
of optimized Gaussian-Type orbitals (GTOs)

G(r) = N rℓe−αr2 (2)

(N is a normalization factor) and antisymmetrized
products of these GTOs, in order to obtain ground
and excited states of the considered neutral and ionized
species, with special emphasis on the levels of interest
in our investigation, i.e. C3+(1s2s2p 4P, 2P±). The
GTOs used in our calculations are listed in Table II. The

energies obtained for the C4+ and C3+ excited states
under consideration in the present work are shown in
Table III.

The close-coupling calculations presented in this Letter
were performed using, for doublet total spin symmetry,
1794 (1807) states and pseudo states for C4++ He
(C4++ H) collisions, and, for quartet spin symmetry,
respectively 802 (812). The convergence of the results
were further checked by comparing the present energies
and cross sections to the respective values obtained from
(i) smaller GTO basis sets and (ii) using a different model
potential for He: the level of convergence for the cross
sections of importance in our investigation was found to
be 15% or better, and induces minimal deviations (≈ 5%)
in the ratio R.

SIMPLIFIED STATIC AND DYNAMIC MODELS

To gain further insight into the dynamics of our
collision system, we have developed a simplified model,
assuming the minimal description of the atomic states
under consideration, as well as 2-state OBK-type
approach for the dynamics. The C3+(1s2s2p) 4P , 2P−
and 2P+ states are described by the simplest expressions
using the three orthonormalized atomic orbitals 1s, 2s
and 2p (written respectively as 1, 2 and 3 for simplicity
in the following): they are then expressed by linear
combinations of Slater determinants in order to be
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TABLE I. Coefficients and exponents used to represent the system He+ + e− by the model potential defined in Eq. 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
ci 1.0 0.02122 0.23856 0.24184 0.18409 0.12201 0.13192 0.01928 0.10648 0.10665 -0.04115 -0.07789 -0.07425
αi 0.0 0.73506 4.59598 13.37885 47.82184 260.82361 1.78475 0.50641 1.07305 2.38839 12.09488 30.87964 153.60719

TABLE II. Angular momenta, ℓ, and exponents, α (7.25−3 ≡
7.25 × 10−3), of the GTOs (Eq. 2) used for the calculations
reported in this Letter to span He, C4+ and C3+ species.

He C4+, C3+

ℓ α ℓ α ℓ α

0 7.25−3 0 5.50−2 0 2.24+1

0 2.90−2 0 1.30−1 0 5.30+1

0 1.16−1 0 3.06−1 0 1.25+2

0 4.66−1 0 7.23−1 1 2.60−1

0 1.8600 0 1.7100 1 7.50−1

0 7.4700 0 4.0300 1 2.4500

0 2.99+1 0 9.5100 1 8.0000

TABLE III. Energies (in a.u.) of some of the important
C4+ and C3+ states included in our basis set used in the
close-coupled calculations. The values are relative to the
corresponding ground states. For comparison, the last line
shows the values from other sources as marked.

C4+ C3+

1s2s 1s2s2p 1s2s3s 1s2s3p
3S 4P 2P−

2P+
4S 4P

10.90 10.73 10.95 11.11 12.17 12.55
10.99a 10.77b 10.99b 11.15b 12.22c 12.31b

a NIST (https://www.nist.gov/pml/atomic-spectra-database)
b Chen [3]
c Dumont et al. [4]

eigenfunctions of the total spin S2 operator, as follows,

|4P > ≡ |123| (3a)

|2P− > ≡ 1√
2
(|12̄3| − |1̄23|) (3b)

|2P+ > ≡ 1√
6
(|1̄23|+ |12̄3| − 2× |123̄|) (3c)

for the components of largest MS value (+3/2 for 4P and
+1/2 for 2P±). In Eqs. 3, for example |1̄23| represents a
Slater determinant and the spin-orbital 1̄ stands for 1s×β
and 3 for 2p×α (α and β correspond to spin-up and spin-
down, respectively). These equations are schematically
shown in Eqs. 3 of the Letter. Using the C3+ hamiltonian
operators H, where all Coulomb interactions, nucleus-
electron attraction and electron-electron repulsion, are
taken into account, the energy associated with these

three states can be expressed as:

E[4P ] =

3∑
i=1

(Ii +

3∑
j>i

Jij)− (K23 +K13 +K12) (4a)

E[2P−] =

3∑
i=1

(Ii +

3∑
j>i

Jij)−
1

2
(K23 +K13 − 2K12)

(4b)

E[2P+] =

3∑
i=1

(Ii +

3∑
j>i

Jij) +
1

2
(K23 +K13 − 2K12)

(4c)

Here, Ii are the monoelectronic integrals:

Ii =< i| − 1

2
∆µ − Zp

rµ
|i >≡ Tii + V P

ii (5)

(Zp=6) and Jij and Kij are, respectively, the direct and
exchange bielectronic integrals:

Jij =< ij| 1

rµν
|ij >≡< ij||ij > (6a)

Kij =< ij| 1

rµν
|ji >≡< ij||ji > (6b)

where µ (ν) represents any electron among the three
active ones. Knowing that K23 between 2s and 2p is the
largest exchange integral, the three states in Eqs. 3 show
the correct energy ordering, E[4P ] < E[2P−] < E[2P+],
in agreement with experiment, as seen in Fig. 1 of the
Letter.
The relative strength of electron capture to these

three states can be estimated using the Oppenheimer-
Brinkman-Kramers (OBK) [5] approximation in its prior
form for the evaluation of transition probability i → f
given by:

∣∣cOBK
fi (b)

∣∣2 =

∣∣∣∣−i

∫ +∞

−∞
dt < Ψf |WP |Ψi > e−i∆Eif t

∣∣∣∣2 ,
(7)

whereWP is the interaction between the electron initially
(say λ) on the target and the projectile nucleus and the
two other electrons (µ, ν)

WP ≡ −Zp

rλ
+

1

rλµ
+

1

rλν
(8)
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Here, the final state Ψf is one of the three states of
Eqs. 3, while the initial state Ψi = |123| or |123̄|,
corresponds to C3+(1s2s 3S) and one electron in the He
1s orbital (labelled as 3). ∆Eif = Ei − Ef − v2/2 is
the energy difference between the initial state and final
states, augmented by the kinetic part of the electron
translation factor [5]. Neglecting the rather small
energy differences between the three final P states under
consideration compared to the overall energy difference
∆Eif , the probability to populate these states becomes
proportional to the square of the coupling matrix element
MP

f ≡< Ψf |WP |Ψi > in Eq. 7. This can be evaluated

for the final states 4P , 2P− and 2P+ as:

MP
4P =V P

33+ < 13||13 > + < 23||23 >

− < 13||31 > − < 23||32 > (9a)

MP
2P−

=
1√
2
(< 13||31 > − < 23||32 >) (9b)

MP
2P+

= −
√

2

3
V P
33 −

√
2

3
(< 13||13 > + < 23||23 >

+
1

2
< 13||31 > +

1

2
< 23||32 >) (9c)

where the orthonormalisation relations of the spin
functions have already been used. Here, all matrix
elements include the electron translation factor and
orthogonality is assumed between the four atomic
orbitals under consideration. The monoelectronic matrix
element

V P
33 =< 3| − Zp

rµ
|3 > (10)

(referred to as IP in the Letter) couples the 1s AO (3)
centred on He to the 2p AO (3) centred on carbon. It is
proportional to the charge of the projectile nucleus, Zp =

6, and is therefore the dominant term in Eqs. 9. The
probabilities for capture to the 4P and 2P+ are therefore
proportional to |IP |2 and (2/3)|IP |2 respectively, and
larger than the one for 2P−, expressed only in terms of
bielectronic matrix elements.
Then, neglecting the bielectronic, direct and exchange,

matrix elements, the ratio R of the 1s2s2p capture cross
sections for the quartet state, σ(4P ), to the doublet
states, σ(2P±)

R =
σ(4P )

σ(2P+) + σ(2P−)
(11)

becomes equal to 3/2. Within this model and
approximation, this value represents an upper limit to
the ratio R, which can only fortuitously (depending
on the actual magnitude and sign of the bielectronic
integrals) equal to 1 or 2, corresponding, respectively,
to the limits of “pure spin statistics” and “frozen 1s2s 3S
spin statistics” in the Letter.
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