State-resolved KLL cross sections of single electron capture in collisions of swift C⁴⁺(1s2s ³S) ions with gas targets

I Madesis^{1,2}, A Laoutaris^{1,2}, S Nanos^{2,3}, T J M Zouros¹, A Dubois^{4†} and E P Benis^{3,*}

¹Department of Physics, University of Crete, GR-70013 Heraklion,

²Tandem Accelerator Laboratory, INPP, NCSR "Demokritos", GR-15310 Ag. Paraskevi, Greece

³Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece

⁴Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matiére et Rayonnement, F-75005 Paris, France

Synopsis We report on the absolute cross sections determination for the production of the 1s2s2p ⁴P and ²P states via single electron capture in collisions of swift C⁴⁺(1s2s ³S) ions with gas targets (H₂, He, Ne and Ar). The absolute cross sections were determined experimentally for all targets using high resolution Auger projectile spectroscopy, as well as theoretically for H₂ and He targets using ab initio calculations based on a three-electron close-coupling semiclassical approach.

In a recent publication [1] we reported on the formation of doubly excited triply open-shell C³⁺(1s2s2p^{2,4}P) states via single electron capture (SEC) in collisions of swift C⁴⁺(1s2s ³S) preexcited ions with H₂ and He gas targets. Using high resolution Auger projectile spectroscopy and ab initio calculations based on a threeelectron close-coupling (3eAOCC) semiclassical approach, we resolved a long-standing controversy on the value of the cross sections ratio $R=\sigma(^{4}P)/\sigma(^{2}P)$, used as a measure of spin statistics. Our findings invalidate the generally adopted frozen core approximation for the SEC process in multi-electron, multi-open-shell quantum systems and a new screening effect due to the Pauli exclusion principle (Pauli shielding) was proposed.

Here, we report on the determination of the absolute cross sections for the production of the ⁴P and ²P states via SEC in collisions of swift $C^{4+}(1s2s \ ^3S)$ ions with H₂ and He gas targets, as well as with Ne and Ar. The determination of the ratio R requires only relative electron yields and thus the corresponding absolute cross sections were not considered in [1].

The absolute cross sections were obtained experimentally after separating the contributions for the metastable 1s2s ³S part of the C⁴⁺(1s² ¹S, 1s2s ^{1,3}S) mixed-state ion beam, delivered by the tandem Van der Graaff accelerator. For this, we have developed a two-measurement technique [2] that exploits two independent spectrum measurements performed with ions having quite different 1s2s ${}^{3}S$ metastable fractions. In addition, the technique provides the value of the 1s2s ${}^{3}S$ metastable fraction that is necessary for the absolute cross section determination of the ${}^{4}P$ state.

The absolute cross sections were also determined within the 3eAOCC calculations [3] for the cases of H₂ and He. In the case of the longlived ⁴P state, selective cascade feeding from higher lying quartet states populated by SEC had to be considered [4].

A good agreement is evident both for H_2 and He targets. Moreover, the cross sections for Ne and Ar targets are shown to roughly scale with the number of electrons that can participate in the SEC process.

References

- [1] Madesis I et al 2020 Phys. Rev. Lett. 124 113401
- [2] Benis E P et al 2016 J. Phys. B 49 235202
- [3] Gao J W et al 2017 Phys. Rev. A 96 052703
- [4] Zouros T J M *et al* 2020 Atoms 8 61

We acknowledge support of this work by the project "Cluster of Accelerator Laboratories for Ion-Beam Research and Applications - CALIBRA" (MIS 5002799) implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

[†]E-mail: <u>alain.dubois@sorbonne-universite.fr</u>

^{*} E-mail: <u>mbenis@uoi.gr</u>