Energy levels, transition rates and lifetimes for Li-like ions with $Z \leq 10$ in the $1s2s(3S)3\ell$ states
Energy levels, transition rates and lifetimes for Li-like ions with \(Z \leq 10 \) in the \(1s2s(3S)3\ell \) states

J. P. Santos\(^1\), J. P. Marques\(^\ast\), M. C. Martins\(^1\), P. Indelicato\(^\dagger\), E. P. Benis\(^\ast\), T. J. M. Zouros\(^\ddagger\), F. Parente\(^\ddagger\)

\(^1\) Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL) e Departamento de Física da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica, Portugal
\(^\ast\) BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
\(^\dagger\) Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Case 74; 4, place Jussieu, 75252 Paris CEDEX 05, France

Synopsis

Energy levels, transition rates and lifetimes for Li-like ions with \(Z \leq 10 \) in the \(1s2s(3S)3\ell \) states were calculated using the Dirac-Fock approach.

In the continuation of the study of the selective enhancement of \(1s2n\ell \) metastable states populated by cascades in single-electron transfer collisions of ions with He and H\(_2\) targets [1], we calculated the energy levels, transition rates and lifetimes for Li-like ions with \(Z \leq 10 \) in the \(1s2s(3S)3\ell \) states states using the multi-configuration Dirac-Fock (MCDF) code of Desclaux and Indelicato [2, 3].

Table 1. Energy levels (EL), Auger and radiative transition rates (ATR, RTR, respectively) and lifetimes for Ne Li-like ions in the \(1s2s(3S)3s^{2,4}S \) states.

<table>
<thead>
<tr>
<th></th>
<th>(^2S_{1/2})</th>
<th>(^4S_{3/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL (eV)</td>
<td>-1750.35</td>
<td>-1760.53</td>
</tr>
<tr>
<td>ATR (s(^{-1}))</td>
<td>3.23x10(^{13})</td>
<td>3.02x10(^{13})</td>
</tr>
<tr>
<td>RTR (s(^{-1}))</td>
<td>3.16x10(^{10})</td>
<td>6.69x10(^{10})</td>
</tr>
<tr>
<td>Lifetime (s)</td>
<td>3.10x10(^{-14})</td>
<td>3.30x10(^{-14})</td>
</tr>
</tbody>
</table>

The radiative and radiationless decay rates were calculated using the code in the single-configuration approach, with the Breit interaction and the vacuum polarization terms included in the self-consistent field calculation, and other QED effects, such as self-energy, included as perturbations [4].

References

\(^{\ast}\) E-mail: jps@fct.unl.pt

Published under licence by IOP Publishing Ltd