ENERGY LEVELS, TRANSITION RATES AND LIFETIMES FOR LI–LIKE IONS WITH Z ≤ 10 IN THE 1s2s(3S)3p STATES

J. P. Santos¹, J. P. Marques², M. C. Martins¹, P. Indelicato³, E. P. Benis⁴, T. J. M. Zouros⁴, F. Parente¹,

¹ Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Dep. Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
² BiD3 – Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
³ Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, Sorbonne Université, UPMC-Univ. Paris 06, Case 74 4, place Jussieu, F-75252 Paris CEDEX 05, France
⁴ Department of Physics, University of Ioannina, GR 451 10 Ioannina, Greece
⁵ Department of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece

Introduction

• In the continuation of the study of the selective enhancement of 1s2s metastable states populated by cascades in single-electron transfer collisions of ions with He and H₂ targets [1], we calculated the energy levels, transition rates and lifetimes for Li-like ions with Z ≤ 10 in the 1s2s(1S)3p states using the multiconfiguration Dirac-Fock (MCDF) code of Desclaux and Indelicato [2, 3].

MCDF Method

• The radiative and radiationless decay rates were calculated using the code in the single configuration approach, with the Breit interaction and the vacuum polarization terms included in the self-consistent field calculation, and other QED effects, such as self-energy, included as perturbations [4].

• The calculation of the radiationless transitions were done by assuming a two-step process, in which the decay is independent from the ionization. Hence, the two electrons do not interact with each other and the core hole state interacts very weakly with the continuum electron, allowing for the transition rates to be calculated from perturbation theory.

• Initial-state wavefunctions were generated for configurations that contain one initial inner-shell vacancy while final state wavefunctions were generated for configurations that contain two higher shell vacancies.

• Continuum-state wavefunctions were obtained by solving the Dirac-Fock equations with the same atomic potential of the initial state, normalized to represent one ejected electron per unit energy.

Calculations

• We calculated the lifetimes of the following 1s2s3p levels, for 5sZs10:

<table>
<thead>
<tr>
<th>#</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
<tr>
<td>2</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
<tr>
<td>3</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
<tr>
<td>4</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
<tr>
<td>5</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
<tr>
<td>6</td>
<td>1s2s (1S₁) 3p 1p₁₀₂</td>
</tr>
</tbody>
</table>

• The decay may occur to the following levels:

<table>
<thead>
<tr>
<th>Type</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative</td>
<td>1s2s ²2S₁₂</td>
</tr>
<tr>
<td></td>
<td>1s²2s ²2S₁₂</td>
</tr>
<tr>
<td>Radiationless</td>
<td>1s² ¹S₀</td>
</tr>
</tbody>
</table>

Results

![Figure 1 – Lifetime values for the above transitions as function of Z](image)

References