MODELING THE 1s2l2l' AUGER PROJECTILE SPECTRUM IN C⁴⁺ (1s2s ³S) COLLISIONS WITH He INCLUDING RADIATIVE CASCADE REPOPULATION AND AUGER DEPLETION

I. Madesis^{*a,b*}, A. Laoutaris^{*b*}, E.P. Benis^{*c*}, **T.J.M. Zouros**^{*a,b*}, T. Kirchner^{*d*}, J.P. Santos^{*e*}, F. Parente^{*e*} and M. C. Martins^{*e*}

^aDept. of Physics, Univ. of Crete, P.O Box 2208, GR 71003 Heraklion, Greece.

^bTandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Ag Paraskevi, Greece.

^cDept. of Physics, University of Ioannina, GR 45110 Ioannina, Greece.

^dDept. of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada.

^eLIBPhys-UNL, Dep. Física, FCT, Univ. NOVA de Lisboa, 2829-516 Caparica, Portugal.

We investigate the production of the $1s2s2p^{4,2}P$ states populated by single electron capture in 12 MeV C⁴⁺ + He collisions. The ⁴P/²P ratio of Auger electron yields has been found not to obey the expected spin recoupling statistics, but instead is enhanced [1, 2]. Various explanations have been proposed [1-3], but none of them can fully account for the observed enhancement. Here, we combine our recent Monte Carlo approach for simulating the projectile Auger spectrum utilizing the SIMION package [3] including the important solid angle corrections to the long lived ⁴P line together with calculations of single electron capture into (1s2s ³S)*nl* states [4] which include repopulation by radiative cascades and Auger depletion to model the experimental spectra. Preliminary results are presented in figure 1.

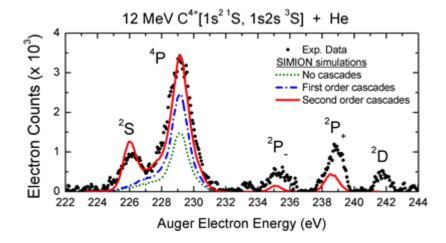


Figure 1: 1s2l2l'Auger projectile spectrum from 12 MeV C^{4+} + He collisions measured with our hemispherical analyzer. Lines: SIMION simulations including model contributions (normalized to the ⁴P yield) are compared to the spectrum (black dots). The ⁴P line is seen to be strongly enhanced by cascades. The observed excess electron yield in the ²P_± and ²D states is due to Transfer-Excitation from the ground state not included in the capture calculations.

References

- [1] Strohschein et al. Phys. Rev. A77 022706 (2008).
- [2] T. J. M. Zouros et al. Phys. Rev. A77, 050701R (2008).
- [3] S. Doukas et al. Rev. Sci. Instr. 86, 043111 (2015).
- [4] D. Rohrbein, T. Kirchner, and S. Fritzsche, Phys. Rev. A81, 042701 (2010).