Energy levels, transition rates and lifetimes of 1s2s(3S)3l states for Li-like ions with $Z \leq 10$

J. P. Santosa, J. P. Marquesb,a, M. C. Martinsa, P. Indelicatoc, E. P. Benisd, I. Madesise, T. J. M. Zourose, F. Parenta,b

aLaboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2892-516 Caparica, Portugal

bBioISI - Biosystems & Integrative Sciences Institute, Departamento de Física, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal

cLaboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University Collège de France

dDepartment of Physics, University of Ioannina, GR 45110 Ioannina, Greece

eDepartment of Physics, University of Crete, P.O Box 2208, GR 71003 Heraklion, Greece

The study of the selective enhancement of 1s2snl states populated by cascades in single-electron transfer collisions of ions with He and H$_2$ targets have been studied by Zouros et al. [1]. In this work, we present the energy levels, transition rates and lifetimes for Li-like ions with $Z \leq 10$ in the 1s2s(3S)3l states calculated using the multiconfiguration Dirac-Fock (MCDF) code of Desclaux and Indelicato [2, 3]. The preliminary results obtained for the 1s2s3p levels are displayed in Figure 1.

![Figure 1: Total radiative transition probabilities of the 1s2s3p levels as function of the Z.](image)

LIBPhys-UNL and BioISI are respectively supported by the grants UID/FIS/04559/2013 UID/MULTI/04046/2013 from FCT/MCTES/PIDDAC, Portugal. EPB and TJMZ are co-financed by the European Union (European Social FundESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (Grant No. MIS 377289).

References