Determination of the $^4P^0/2P$ ratio in single electron capture of C$^{4+}$ ($1s^2$, $1s2s \, ^3S$) mixed state ion beams in 6-18 MeV collisions with H$_2$, He, Ne and Ar targets

I. Madesis*, A. Laoutaris**, E. P. Benis†, T. Kirchner$*$, T. J. M. Zouros1,†

*Department of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece
1†Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Ag. Paraskevi, Greece
‡Department of Physics, University of Ioannina, GR 45110 Ioannina, Greece
$*$Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3 Canada

Synopsis: Zero-degree Auger projectile electron spectroscopy of pre-excited He-like ions colliding with various gas targets is used with a new experimental technique which relies on the combination of gas and foil strippers to vary the metastable fraction sufficiently to allow for the determination of the ratio $^4P^0/2P$ of recent interest. Results to date for C$^{4+}$ ions will be presented.

A zero-degree Auger projectile spectroscopy apparatus composed of a single stage hemispherical deflector analyzer with four-element injection lens and a position sensitive detector combined with a doubly differentially pumped gas target has been newly set up for high resolution studies of electrons emitted from ions colliding with gas targets. Using this setup we have started a systematic isoelectronic investigation of projectile K-Auger electrons emitted from pre-excited He-like ions in collisions with gas targets [1]. The goal is to study single electron capture to the $1s2s \, ^3S$ long-lived component of the typically mixed state ($1s^2$, $1s2s \, ^3S$) He-like ion beam. The observed KLL Auger lines for 9 MeV C$^{4+}$ collisions, shown in Fig. 1, can be produced either by direct electron capture to the $1s2s \, ^3S$ component or by transfer-excitation from the $1s^2$ ground state [2-4]. The ratio R_m of $^4P^0/2P$ line intensities due to capture to the $1s2s \, ^3S$ has been found to be greatly enhanced from the spin statistics [2-5] predicted value of 2, invoking contentious explanations. To isolate the $1s2s \, ^3S$ capture contributions, a new technique is employed [5] requiring the measurement of two Auger KLL spectra using C$^{4+}$ ions with sufficiently different $1s2s \, ^3S$ metastable fraction. This fraction can be varied by the judicious use of terminal and/or post (terminal) foil or gas stripping [5].

The measured R_m values depend critically on the solid angle correction of the 4P_J yields. These states are long-lived, Auger decaying all along the projectile path, after excitation in the target gas cell. This correction has been determined and applied to our measurements using a new Monte Carlo electron trajectory simulation approach [6] with the use of the SIMION charged particle optics software [7].

References

1E-mail: tzouros@physics.uoc.gr