Investigation of 2s2p 31P excitation lines in 6-18 MeV C$^4+$ (1s^2, 1s2s 3S) collisions with gas targets

A. Laoutaris1,2, I. Madesis1,2, E. P Benis3, T.J.M Zouros1,2

1Department of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece
2Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Ag. Paraskevi, Greece
3Department of Physics, University of Ioannina, GR 45110 Ioannina, Greece

Presenting author email: laoutaris@physics.uoc.gr

A zero-degree Auger projectile spectroscopy (ZAPS) apparatus has recently been integrated at the Demokritos 5.5 MV tandem accelerator and is dedicated to high resolution Auger electron spectroscopy studies. Using this ZAPS setup we have initiated a systematic isoelectronic investigation of projectile K-Auger electrons emitted from pre-excited He-like ions in collisions with dilute gas targets [1]. One of our research goals is to study the formation mechanisms of the 2s2p 31P states. These lines are of particular importance in the detailed study of fundamental excitation mechanisms [2,3], i.e. electron-nucleus, electron-electron and electron-electron excitation with spin exchange.

So far, we have obtained the collisional energy dependence of the total excitation cross sections of the 2s2p 31P states. Typical measurements of high resolution Auger spectra are shown in Fig. 1. Currently, we are elaborating on the role of the above mechanisms in the population of the 2s2p 31P states utilizing a varying metastable 1s2s 3S He-like beam fraction. Our latest results on this study will be presented.

![Figure 1](image-url)

Figure 1: (Black Circles) C$^{4+}$($1s^2$,1s2s 31S) KLL, (Blue squares) C$^{4+}$($2s2p$ ^3$1P) KLL and C$^{4+}$($1s2s$ 3S)nl KLn ($n=3$-4) Auger lines. The beam was produced by gas stripping in the accelerator terminal followed by gas post-stripping of the analyzed C$^{4+}$ ions.

* We acknowledge support of this work by the project “Cluster of Accelerator Laboratories for Ion-Beam Research and Applications - CALIBRA” (MIS 5002799) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

References