SOLID ANGLE CORRECTION FACTORS
FOR HEMISPHERICAL AND TWO-STAGE PARALLEL PLATE ANALYZERS
IN THE DETECTION OF LONG LIVED PROJECTILE AUGER STATES

S. DOUKAS1, E. P. BENIS2 and T. J. M. ZOYROS3,4

1Dept. of Materials Science and Engineering, Univ. of Ioannina, GR 45110 Ioannina, Greece
2Dept. of Physics, University of Ioannina, GR 45110, Ioannina, Greece \texttt{mibenis@uoi.gr}
3Dept. of Physics, Univ. of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece
4Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Ag Paraskevi, Greece

We present SIMION8.1 Monte Carlo type simulations of the response function and detection solid angle of two analyzers: A hemispherical spectrograph with injection lens and position sensitive detector, and a two-stage parallel plate analyzer, both used in Auger projectile electron spectroscopy. Here the spectrometer lies in the direct path of the ion (and the electrons are measured at 0° with respect to the beam direction) and the excited metastable projectile states (lifetimes \sim1-103 ns) decay all along its path towards the spectrometer (and even inside the spectrometer). Thus, the overall electron detection solid angle varies with the position of electron emission resulting in a considerable correction to the measured electron yield. These effects, particular to Auger emission from fast moving projectile ions, are also included in our simulations. Our results are important for the accurate evaluation of the 1s2s2p 4P/2P ratio of K-Auger cross sections, whose observed non-statistical production by electron capture into He-like ions, recently a field of differing interpretations, awaits further resolution.