Abstract ID : 74

THE ROLE OF THE EFFECTIVE SOLID ANGLE IN THE DETERMINATION OF THE ELECTRON YIELD OF METASTABLE PROJECTILE AUGER STATES

Content :

The 1s2s2p 4P metastable state life time formed by single electron capture (EC) in MeV/u He-like-ion - atom collisions is long (10^-6-10^-9s). In electron measurements, where the spectrometer lies in the direct path of the ion, electrons are measured at 0o to the beam and metastable projectile states Auger decay all along its path towards the spectrometer. Thus, the overall detection solid angle varies with the electron emission position and the determination of the Auger yields is not straightforward. Here, the SIMION electron optics software is used to treat the problem in an effective Monte Carlo simulation that includes τ obtained using the MCDF method. The experimental setup involving a hemispherical deflector analyzer with injection lens and PSD was accurately modeled. Random electron distributions in electron energy and emission angles were used to simulate the metastable Auger decay along the beam path, while the number of electrons was recorded. A systematic study based on the above procedure allowed for the accurate determination of the solid angle correction factor for the 4P decay in excellent agreement with measured electron line shapes of both metastable and prompt Auger projectile states formed by EC in collisions of 25 MeV F7+ with H2 [1] and 12 MeV C4+ with Ne. These results are important in the accurate evaluation of the 4P/2P ratio of Auger yields [2], whose observed non-statistical production by electron capture into He-like ions awaits further resolution [3].

References

Co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)—Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (Grant No. MIS 377289).

Primary authors : Prof. BENIS, Emmanouil (University of Ioannina) ; Prof. ZOUROS, Theo (Dept. of Physics, Univ. of Crete, P.O Box 2208, GR 71003 Heraklion, Greece) ; Mr. DOUKAS, Spyridon (Dept. of Material Science and Engineering, Univ. of Ioannina, GR 45110
Ioannina, Greece)

Co-authors: Mr. MADESIS, Ioannis (Dept. of Physics, Univ. of Crete, P.O Box 2208, GR 71003 Heraklion, Greece); Dr. DIMITRIOU, Anastasios (Tandem Accelerator Laboratory, INPP, NCSR Demokritos, GR 15310 Ag Paraskevi, Greece); Mr. LAOUTARIS, Aggelos (Dept. of Applied Physics, National Technical University of Athens, GR 15780, Zographou, Greece); Prof. PARENTE, Fernando (LIBPhys, Dep. Física, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal); Prof. MARTINS, Conceicao (LIBPhys, Dep. Física, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal); Prof. MARQUES, Jose Pires (BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal); Prof. INDELICATO, Paul (Laboratoire Kastler Brossel, ENS, CNRS, UPMC, Case 74; 4, place Jussieu, 75005 Paris, France); Prof. SANTOS, Jose Paulo (LIBPhys, Dep. Física, FCT, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal).

Presenter: Prof. BENIS, Emmanouil (University of Ioannina)

Track classification: Simulations

Contribution type: Oral

Submitted by: Prof. BENIS, Emmanouil

Submitted on: Wednesday 14 January 2015

Last modified on: Wednesday 14 January 2015

Comments: